

NPN/PNP Silicon Complementary Small Signal Dual Transistor Qualified per MIL-PRF-19500/421

Qualified Levels: JAN, JANTX, and JANTXV

DESCRIPTION

This 2N4854 device in a 6-pin TO-78 package is military qualified up to a JANTXV level for high-reliability applications. Microsemi also offers numerous other products to meet higher and lower power voltage regulation applications.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- JEDEC registered 2N4854.
- JAN, JANTX, and JANTXV qualifications also available per MIL-PRF-19500/421.
- RoHS compliant versions available (commercial grade only).

TO-78 Package

Also available in:

6-Pin Flatpack package 2N3838

APPLICATIONS / BENEFITS

- Compact package design.
- Lightweight.

MAXIMUM RATINGS

Parameters/Test Conditions	Symbol	Value per		Unit
		Each Transistor	Total Package	
Thermal Resistance Junction-to-Case	Rejc	175	87	°C/W
Thermal Resistance Junction-to-Ambient	R _{OJA}	350	290	°C/W
Total Power Dissipation @ T _A = +25 °C (1)	P _T	0.30	0.60	W
Total Power Dissipation @ T _C = +25 °C (2)	P_{T}	1.0	2.0	W
Junction and Storage Temperature	T_J and T_STG	-65 to +200		°C
Collector-Base Voltage, Emitter Open	V _{CBO}	60		V
Emitter-Base Voltage, Collector Open	V_{EBO}	5		V
Collector-Emitter Voltage, Base Open	V _{CEO}	40		V
Collector Current, dc	I _C	600		mA
Lead to Case Voltage		+/- 120		V
Solder Temperature @ 10 s	T _{SP}	260		°C

Notes: 1. For $T_A > +25$ °C, derate linearly 1.71 mW/°C one transistor, 3.43 mW/°C both transistors.

2. For $T_C > +25$ °C, derate linearly 5.71 mW/°C one transistor, 11.43 mW/°C both transistors.

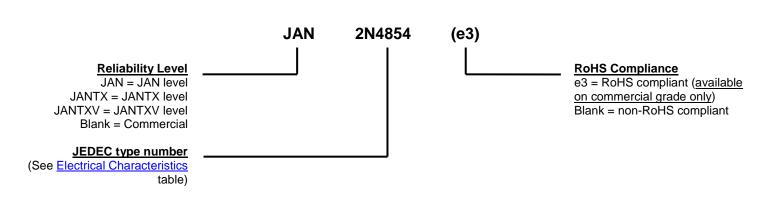
MSC – Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC - Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:


www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Au over Ni plated kovar, pure nickel cap.
- TERMINALS: Au over Ni plated kovar.
- MARKING: Manufacturer's ID, part number, date code.
- POLARITY: See case outline.
- WEIGHT: 0.856 grams.
- See <u>Package Dimensions</u> on last page.

PART NOMENCLATURE

SYMBOLS & DEFINITIONS				
Symbol	Definition			
I _B	Base Current, dc.			
Ic	Collector Current, dc.			
IE	Emitter Current, dc.			
Io	Average Rectified Output Current: The Output Current averaged over a full cycle with a 50 Hz or 60 Hz sine-wave input and a 180 degree conduction angle.			
V _{CB}	Collector-Base Voltage (dc).			
V _{CE}	Collector-Emitter Voltage, dc.			
V _{EB}	Emitter-Base Voltage (dc).			

ELECTRICAL CHARACTERISTICS @ $T_A = 25$ °C unless otherwise noted.

Characteristics	Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Current	V	40		V
I _C = 10 mA (pulsed)	V _{(BR)CEO}	40		V
Collector-Base Cutoff Current	longu		10	
$V_{CB} = 60 \text{ V}$	I _{CBO(1)}		10	μΑ
Collector-Base Cutoff Current	I _{CBO(2)}		10	nA
$V_{CB} = 50 \text{ V}$	ICBO(2)		10	ША
Emitter-Base Cutoff Current				
$V_{EB} = 5.0 \text{ V}$	I _{EBO(1)}		10	μA
$V_{EB} = 3.0 \text{ V}$	I _{EBO(2)}		10	nA
ON CHARACTERISTICS				
Forward-Current Transfer Ratio				
$I_C = 150 \text{ mA}, V_{CE} = 1 \text{ V}$	h _{FE}	50		
$I_{C} = 100 \mu A, V_{CE} = 10 V$		35		
$I_C = 1.0 \text{ mA}, V_{CE} = 10 \text{ V}$		50		
$I_C = 10 \text{ mA}, V_{CE} = 10 \text{ V}$		75		
$I_C = 150 \text{ mA}, V_{CE} = 10 \text{ V}$		100	300	
$I_C = 300 \text{ mA}, V_{CE} = 10 \text{ V}$		35		
Collector-Emitter Saturation Voltage	V _{CE(sat)}		0.40	V
$I_C = 150 \text{ mA}, I_B = 15 \text{ mA}$	(
Base-Emitter Saturation Voltage	V _{BE(sat)}	0.80	1.25	V
I _C = 150 mA, I _B = 15 mA	(/			
DYNAMIC CHARACTERISTICS			1	
Forward Current Transfer Ratio	h _{fe}	60	300	
$I_C = 1.0 \text{ mA}, V_{CE} = 10 \text{ V}, f = 1.0 \text{ kHz}$				
Forward Current Transfer Ratio, Magnitude	h _{fe}	2.0	10	
$I_C = 20 \text{ mA}, V_{CE} = 10 \text{ V}, f = 100 \text{ MHz}$	1 101			
Small-Signal Common Emitter Input Impedance	h _{ie}	1.5	9.0	kΩ
$I_C = 1.0 \text{ mA}, V_{CE} = 10 \text{ V}, f = 1.0 \text{ kHz}$	· ·ie	1.0	0.0	
Small-Signal Common Emitter Output Admittance	haa		50	μhmo
$I_C = 1.0 \text{ mA}, V_{CE} = 10 \text{ V}, f = 1.0 \text{ kHz}$	h _{oe}		30	μιιιιο
Open Circuit Output Capacitance	C .		8.0	5
$V_{CB} = 10 \text{ V}, I_E = 0, 100 \text{ kHz} \le f \le 1.0 \text{ MHz}$	C _{obo}		0.0	pF
Noise Figure	NE		0.0	-ID
$I_C = 100 \mu A$, $V_{CE} = 10 \text{ V}$, $f = 1.0 \text{ kHz}$, $R_G = 1.0 \text{ k}\Omega$	NF		8.0	dB
SWITCHING CHARACTERISTICS		1	l	
Turn-On Time (Saturated)	4		4.5	
(Reference MIL-PRF-19500/421, figure 7)	^t on		45	ns
Turn-Off Time (Saturated)	+	†	200	no
(Reference MIL-PRF-19500/421, figure 8)	^t off		300	ns
Pulse Response (Non-Saturated)	t t		10	nc
(Reference MIL-PRF-19500/421, figure 9)	ton + toff		18	ns
Collector-Emitter Non-Latching Voltage	V _{CEO}	40		V
Conector-Emitter Non-Laterning Voltage	V CEO	40		V

GRAPHS

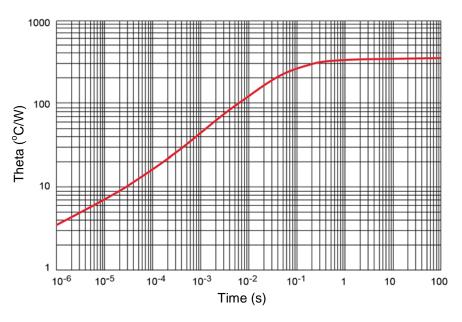
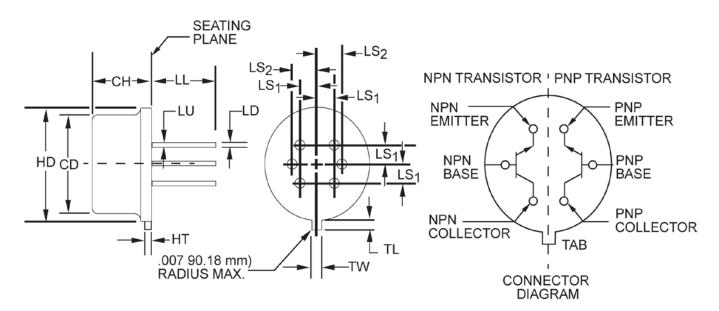



FIGURE 3
Thermal impedance graph (RøJA)

PACKAGE DIMENSIONS

	Dimensions				
Ltr	Inch		Millimeters		Notes
	Min	Max	Min	Max	
CD	.305	.335	7.75	8.51	
СН	.140	.260	3.56	6.60	
HD	.335	.370	8.51	9.40	
HT	.009	.125	0.23	3.18	
LD	.016	.021	0.41	0.53	3,7
LL	.500	1.750	12.70	44.45	7

Dimensions					Notes
Ltr	Inch		Millimeters		
	Min	Max	Min	Max	
LS1	.0707 Nom.		1.796 Nom.		5
LS2	.1000	.1000 Nom.		2.540 Nom	
LU	.016	.019	0.41	0.48	4, 7
TL	.029	.045	0.74	1.14	6
TW	.028	.034	0.71	0.86	

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. Measured in the zone beyond .250 inch (6.35 mm) from the seating plane.
- 4. Measured in the zone .050 inch (1.27 mm) and .250 inch (6.35 mm) from the seating plane.
- 5. When measured in a gauging plane .054 +.001, -.000 inch (1.37 +0.03, -0.00 mm) below the seating plane of the transistor, maximum diameter leads shall be within .007 inch (0.18 mm) of their true location relative to a maximum width tab. Smaller diameter leads shall fall within the outline of the maximum diameter lead tolerance.
- 6. Measured from the maximum diameter of the actual device.
- 7. All six leads.
- 8. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

 $\frac{\text{Microsemi:}}{\frac{2n4854}{}}$